Fundamentals of X-ray Imaging

Dibya Prakash • Rahul Pratap Kotian

Fundamentals of X-ray Imaging

Basic Principles, Quality Control, Clinical Applications, and Safety

Dibya Prakash Advanced Centre for Treatment, Research and Education in Cancer (ACTREC) Tata Memorial Centre, Department of Atomic Energy Kharghar, Navi Mumbai, Maharashtra, India Rahul Pratap Kotian Customer Lifetime Success Manager (MRI) - META Philips Middle East & Turkey & Africa Dubai, United Arab Emirates

ISBN 978-981-96-7327-8 ISBN 978-981-96-7328-5 (eBook) https://doi.org/10.1007/978-981-96-7328-5

© The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd. 2025

This work is subject to copyright. All rights are solely and exclusively licensed by the Publisher, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Singapore Pte Ltd. The registered company address is: 152 Beach Road, #21-01/04 Gateway East, Singapore 189721, Singapore

If disposing of this product, please recycle the paper.

Preface

This textbook is conceptualized as a single, comprehensive reference that meticulously covers all X-ray imaging modalities, catering to a wide spectrum of readers, from diploma students to doctoral candidates in radiology and nuclear medicine, as well as educators, medical physicists, clinicians, and other healthcare professionals. The book presents underlying physics, operational principles, quality control measures, and safety protocols in a manner that is both accessible and thorough. The use of clear and simple language ensures that complex concepts are easily understandable meeting the diverse needs of its audience. The authors have endeavored to address questions that commonly arise in the minds of students and practitioners. To nurture curiosity and critical thinking, the manuscript is, in many places, written in a question-and-answer format, encouraging readers to actively engage with the content and stimulate their own thought process. In each section, the historical aspect of a particular discovery has been discussed in detail to further inspire the thought process behind that discovery and encourage new achievements. The chapters have been crafted so that readers feel they are reading a storybook or novel, allowing them to enjoy the journey of learning science in a more engaging and immersive manner.

The textbook is organized into 12 chapters, starting with foundational concepts and advancing to specialized topics such as X-ray imaging, CT, mammography, fluoroscopy, dental radiography, and hybrid imaging. It serves as a practical reference for professionals, covering routine tasks like X-ray quality control, radiation safety, and patient care. It also addresses the planning and design of radiology departments, with a focus on global standards, safety, and pediatric considerations. Each chapter includes multiple-choice, short-answer, and long-answer questions to support students' exam preparation and reinforce learning.

Chapter 1 provides a thorough foundation in basic radiation science, which is essential for understanding the more advanced concepts discussed in subsequent chapters. Divided into seven sections, it begins with an atomic structure, starting from the evolution of atomic theory and introducing fundamental concepts essential for understanding the nature of matter. The chapter then digs into the principles of electricity and magnetism, explaining how these forces are interconnected and their significance in radiation science. Following this, the book explains radiation quantities and units, providing a clear understanding of how radiation is measured and quantified. The interaction of radiation with matter is another area covered, detailing the various

vi Preface

ways in which radiation behaves when it encounters different materials. The fifth section explains the historical evolution of X-rays, its production, X-ray spectrum, hard and soft X-rays, clinical applications of X-rays and its hazards. The sixth section talks about production of radionuclides, highlighting the processes involved and their significance in medical and scientific applications. Finally, the chapter addresses the concept of radioactivity, discussing its discovery, the different modes of radioactive decay, and its applications.

Chapter 2 begins with an overview of X-ray technology, goes in detail about the historical development of X-ray tubes from Wilhelm Conrad Roentgen's groundbreaking discovery to the rapid advancements that integrated X-ray technology into medical practice. Significant milestones in X-ray tube technology are highlighted, including the evolution from early Crookes tubes to modern innovations like the multi-source X-ray tube and advancements in cathode technology for spectral CT. The basic principles of X-ray tube operation are thoroughly explained, followed by a detailed examination of the different types of X-ray tubes, such as stationary and rotating anode tubes, as well as specialized tubes for various medical applications. The components used in X-ray production are explored in depth, providing insights into the construction and functionality of key parts like the cathode, anode, tube housing, and heat dissipation systems. The chapter then explains manufacturing process of X-ray tubes, ensuring a comprehensive understanding of how these critical devices are produced, tested, and maintained. The chapter also discusses routine quality control measures, safety protocols, and the common causes of X-ray tube failures, along with practical recommendations to maximize tube life. Advancements in X-ray tube technology are highlighted, showcasing innovations that have enhanced performance, power, and safety.

Chapter 3 explains digital radiography systems, focusing on their principles of operation, clinical applications, and the importance of quality control. The chapter is divided into two main sections: computed radiography (CR) and digital radiography (DR). The first section begins with an introduction to computed radiography, tracing its historical development and the factors that should be considered when planning a CR installation. It then explores the working principles of CR, highlighting its benefits and the key instrumentation involved. The chapter also covers the dynamic range of CR, its clinical applications, and the advantages it offers over traditional radiography systems. The discussion on CR concludes with an examination of common image artifacts and the quality control measures necessary to ensure optimal performance, including an overview of top CR manufacturers. The second section shifts focus to digital radiography systems, offering a comprehensive overview of their history, classification, and the major components of a DR imaging system. The chapter explains the technology behind DR flat panel detectors (FPDs), distinguishing between direct and indirect detector technologies. It also explores the advantages of FPDs, the role of charged-coupled devices (CCDs), and the classification of various detector types. The working principles of both indirect and direct flat panel detectors are thoroughly examined, along with a detailed discussion on CCD and Thin Film Transistor (TFT) detectors. The clinical applications of DR are highlighted, showcasing Preface vii

how this advanced technology is utilized in medical imaging. The chapter also addresses common artifacts associated with flat panel detectors, offering insights into their types, causes, and methods for mitigation. Quality control in DR is emphasized, with practical guidance on the tools and equipment needed to implement QC tests effectively. The chapter concludes with a look at recent technological advancements in digital radiography, ensuring readers are up-to-date with the latest innovations in the field.

Chapter 4 focuses on mammography, detailing the essential physics, principles of operation, quality control, and safety protocols integral to this imaging technique. It begins with an introduction and historical overview, tracing the evolution of mammography and its technological advancements. Understanding breast anatomy is also emphasized, laying the foundation for accurate imaging. The chapter then explores the key components of mammography equipment, including the anode heel effect, tube housing, filters, compression devices, and digital mammography technology. Special attention is given to digital breast tomosynthesis (DBT), discussing its principles, advantages, and limitations. Quality control in mammography is thoroughly covered, from the history of QC practices to specific tests for both 2D and DBT imaging. The chapter outlines essential QC procedures, including the evaluation of image quality, AEC performance, and spatial resolution, ensuring high standards are maintained in mammography.

Chapter 5 explores the essential aspects of fluoroscopy, focusing on its physics, operational principles, and the critical quality control measures necessary for effective imaging. It begins with an overview of the evolution of fluoroscopic imaging, tracing its development from early techniques to modern advancements, and includes some lesser-known historical insights. Key topics include the special demands of fluoroscopic imaging and its mechanism of action. The chapter also delves into fluoroscopy instrumentation, highlighting the role of image intensifiers and radiation protection devices in ensuring patient safety. The clinical applications of fluoroscopy are discussed, along with the principles of digital fluoroscopy and the working mechanisms of various flat panel detectors. Radiation dose considerations and protection measures are emphasized to ensure safe practice. The chapter also covers room design for fluoroscopy, ensuring optimal setup for effective imaging. It addresses the importance of image quality control, technological advancements in the field, and common image-related artifacts. Quality assurance (QA) and quality control (QC) practices are also outlined to maintain high standards in fluoroscopic imaging.

Chapter 6 provides a comprehensive exploration of computed tomography (CT) with a focus on its physics, operational principles, quality control, and safety. It begins with a historical overview of CT, tracing its evolution from the earliest scanners to the cutting-edge technologies used today. The chapter covers the different generations of CT scanners, including the latest innovations such as dual-source CT and photon-counting CT, explaining their principles, benefits, and clinical applications. Key concepts such as Hounsfield Units, the Beer-Lambert Law, and the technological components of CT scanners—gantries, X-ray tubes, and data acquisition systems—are thoroughly discussed. The chapter also delves into CT image reconstruction methods,

viii Preface

including Fourier transform and iterative reconstruction techniques. It provides a detailed analysis of the various types of artifacts that can occur in CT images, both 2D and 3D, and offers practical guidance on their prevention and correction. Quality control procedures for CT are emphasized, with a focus on the importance of regular testing, calibration, and dosimetry to ensure accurate and safe imaging. The chapter also addresses the clinical applications of CT across a wide range of medical fields, including cardiac imaging, oncology, and guided biopsies. Additionally, it covers CT room design and safety considerations, with an emphasis on dose reduction techniques and adherence to regulatory guidelines.

Chapter 7 introduces hybrid imaging technologies, providing an in-depth exploration of their physics, operational principles, and quality control requirements. The chapter begins with an introduction to hybrid imaging, explaining the rationale behind combining different imaging modalities and highlighting the limitations of standalone modalities such as PET, SPECT, CT, and MR imaging. It discusses the advantages of hybrid imaging systems, such as improved diagnostic accuracy and enhanced clinical applications. It provides a detailed explanation on positron emission tomography (PET) and single photon emission computed tomography (SPECT) technology, covering its historical development, fundamental principles, and clinical applications, including their significance in diagnosing and managing various diseases. A detailed procedural explanation of quality control is provided with full of images and techniques so that physicist/technologist understand the logic of QC procedure and perform it on ground. The chapter also discuss the technical challenges, advantages, and clinical applications of these hybrid systems.

Chapter 8 explains the field of dental radiography, focusing on its physics, operational principles, quality control, and safety. It begins with an overview of the history of dental radiography, tracing its evolution from the earliest X-rays to the modern digital techniques used today. The chapter covers the different types of dental radiographic techniques, including intraoral and extraoral imaging, and discusses the advantages and limitations of each. The technical components of dental radiography, such as X-ray tubes, film holders, and digital sensors, are thoroughly explained. The chapter also addresses the principles of panoramic radiography, cephalometric analysis, and conebeam computed tomography (CBCT) in dental imaging. Quality control procedures for dental radiography are emphasized, with a focus on the importance of regular testing, calibration, and adherence to radiation protection guidelines to ensure accurate and safe imaging. The chapter also covers the clinical applications of dental radiography, including its use in diagnosis, treatment planning, and monitoring of dental and maxillofacial conditions.

Chapter 9 addresses the critical aspects of radiology department planning, offering a comprehensive guide to the design, construction, and operation of radiology facilities. It begins with an introduction to the key considerations in site planning, including the selection of a suitable location, the layout of the department, and the importance of ensuring adequate space for both current operations and future expansion. The chapter covers the regulatory require-

Preface ix

ments for radiology department design, including building codes, radiation shielding, and environmental considerations. The principles of radiation protection are thoroughly explained, with guidance on how to incorporate these principles into the design of the department. The chapter also addresses the specific needs of different types of radiology facilities, including outpatient clinics, hospitals, and specialized imaging centers. The importance of workflow optimization is emphasized, with practical advice on how to design a department that supports efficient patient flow, staff productivity, and high standards of patient care. The chapter also covers the selection and installation of radiology equipment, including considerations for electrical, mechanical, and IT infrastructure.

Chapter 10 is a practical guide on radiation safety to radiological professionals for the safety of patients as well as practitioners. It provides an indepth explanation of radiation protection principles, dose terminology, and best practices for ensuring safe and effective operation. The chapter begins with an introduction to the basic principles of radiation protection, including the ALARA (As Low As Reasonably Achievable) principle; the concepts of justification, optimization, and dose limits; and the importance of understanding the risks associated with radiation exposure. The chapter then covers the various types of radiation protection devices, including lead aprons, thyroid shields, and protective barriers, and discusses their proper use and maintenance. A special attention is given on how to handle female patients, and as female radiation workers, what precautions are supposed to be followed. A number of questions have been answered which can arise in the mind of radiation worker related to pregnancy and foetal protection. The importance of dose reduction techniques is emphasized, with practical guidance on how to minimize patient and staff exposure during imaging procedures. The chapter also addresses the regulatory requirements for radiation safety, including the roles and responsibilities of radiation safety officers, the importance of maintaining accurate records, and the procedures for reporting radiation incidents.

Chapter 11 focuses on field of pediatric radiology, exploring the unique challenges and considerations associated with imaging children. The chapter begins with an introduction to the anatomical and physiological differences between children and adults, highlighting how these differences impact the selection and performance of imaging procedures. The chapter covers the various types of imaging techniques used in pediatric radiology, including X-ray, ultrasound, CT, MRI, and nuclear medicine, and discusses the advantages and limitations of each. The importance of radiation protection in pediatric imaging is emphasized, with practical guidance on how to minimize radiation exposure while still obtaining high-quality diagnostic images. The chapter also addresses the specific challenges associated with imaging infants and young children, including the need for sedation, the importance of effective communication with both the child and their parents, and the role of child life specialists in supporting the imaging process.

Chapter 12 concludes the textbook by focusing on the critical role of nursing care in radiology, highlighting the importance of patient care, infection

x Preface

control, and emergency protocols in the imaging environment. The chapter begins with an introduction to the role of the radiology nurse, outlining their responsibilities in patient preparation, procedure assistance, and post-procedure care. The chapter covers the principles of patient care in radiology, including the importance of communication, patient education, and the management of anxiety and pain. The chapter also addresses the specific infection control challenges associated with radiology procedures, providing guidance on how to prevent the transmission of infectious agents in the imaging environment. The importance of emergency protocols is emphasized, with practical advice on how to respond to medical emergencies that may occur during imaging procedures, including the management of contrast media reactions, the handling of radiopharmaceuticals, and the provision of basic life support.

We have strived hard to provide valuable content to the radiological and nuclear medicine community, and hope our efforts will serve as a helpful resource. It is our sincere hope that this work benefits and supports the broader field of radiology.

Kharghar, Navi Mumbai, Maharashtra, India Dubai, United Arab Emirates Dibya Prakash Rahul Pratap Kotian

Acknowledgments

Writing this book has been a journey of discovery, perseverance, and growth. It would not have been possible without the unwavering support and love of those closest to me.

First and foremost, I wish to express my deepest gratitude to my wife, Mausam Singh. Her constant encouragement, patience, and understanding have been the bedrock of my efforts. Her unwavering belief in me has been a source of strength and inspiration throughout this project.

To my beloved sons, Shwetank and Saanidhya, thank you for your boundless love and joy. You have motivated me to strive for excellence, and I hope this work reflects the values of dedication and hard work that I wish to pass on to you.

In loving memory of my mother, Late Ramavati Singh, whose nurturing love, strength, and wisdom continue to guide me daily. Her sacrifices and principles have been the foundation of my life and career. I am forever indebted to my father, Indrajeet Singh, whose wisdom and guidance have shaped me into the person I am today. My deepest gratitude also goes to my elder brother, Dr. Shashi Prakash, for his invaluable intellectual guidance and encouragement. To my younger brother, Mani Prakash, thank you for your unwavering support and for always being there whenever needed. Your belief in me has been a source of great comfort.

I extend my heartfelt thanks to Dr. Rahul Kotian, my esteemed co-author. Despite facing significant health and personal challenges, his dedication and support were instrumental in completing this book.

I also wish to acknowledge Sonveer for his exceptional skill in figure drawing, which has greatly enhanced the quality and clarity of this book. Your work has brought my ideas to life, and I am sincerely grateful.

To all those mentioned and others whose names may not appear here but who have contributed in various ways, I offer my heartfelt thanks. This book is as much a product of your support as it is of my own efforts.

Dibya Prakash

I want to express my deepest gratitude to my wife, Disha Kotian, for her unwavering support and encouragement throughout the journey of writing this book.

Her belief in me never wavered, even in moments when I doubted myself. She was my constant source of inspiration, providing me with the strength and motivation to keep going. This book would not have been possible without her patience, love, and understanding. For all the late nights, the endless

xii Acknowledgments

conversations, and her steadfast presence by my side, I am forever grateful. This book is as much hers as it is mine.

I would like to extend my deepest appreciation to my co-author, Dibya Prakash, whose collaboration and dedication made this book possible. Working together has been an incredible experience, and your insights, creativity, and commitment have enriched this project beyond measure. Your expertise and hard work have been invaluable, and I am grateful for the many hours of discussion, revision, and mutual support that went into crafting this book. Thank you for being a true partner in this endeavor.

I would like to express my sincere gratitude to my friends, Sharath S., Assistant Professor at Manipal College of Health Professions, Manipal Academy of Higher Education, and Adithya G. Rao, Assistant Professor in Medical Imaging at Yenepoya University whose steadfast support and encouragement were instrumental in bringing this book to life. Thank you for being my sounding boards, cheerleaders, and sources of motivation throughout this journey. Your belief in me, whether through thoughtful advice, constructive feedback, or simply being there when I needed it most, has meant the world to me. I am incredibly fortunate to have friends like you, and this book reflects the unwavering support you've shown me.

Last but not the least, I want to extend my heartfelt thanks to my family for their unwavering support and encouragement throughout the writing of this book. To my sibling Dr. Sneha, your patience, understanding, and love have been my greatest source of strength. You've been there for me through every step of this journey, offering kind words, thoughtful advice, and, most importantly, your belief in me. This book is a testament to the love and support you've always given me, and I am forever grateful.

Dr. Rahul Pratap Kotian

Contents

1	Prin	ciple o	f Radiation Science: Basic Physics, the Interaction	
	of R	adiatio	on with Matter, and Radiation Production	1
	1.1	Introd	uction	2
	1.2		on A: The Evolution of Atomic Theory: Historical	
		Disco	veries, Models, and Terminologies	5
		1.2.1	Historical Discovery of the Atom	6
		1.2.2	Atomic Models	25
		1.2.3	Terms Related to Atomic Theory	35
	1.3	Sectio	n B: Fundamental Concepts of Electricity	
		and M	Iagnetism	38
		1.3.1	Electricity	38
		1.3.2	Unit of Electricity	39
		1.3.3	Coulomb's Law and Lorentz Force	40
		1.3.4	Concept of mAs Used in X-Ray Machines	42
		1.3.5	Concept of Voltage	43
		1.3.6	Electric Power	44
		1.3.7	Magnetism	45
		1.3.8	An Electric Field Is Always Associated	
			with the Magnetic Field	45
		1.3.9	Electromagnetic Radiation and Electromagnetic	
			Spectrum	46
	1.4	Sectio	on C: Radiation Quantities and Units	49
		1.4.1	Exposure, "X"	49
		1.4.2	Exposure rate, "X0"	50
		1.4.3	Dose and Absorbed Dose "D"	50
		1.4.4	Dose Rate	51
		1.4.5	Equivalent Dose	51
		1.4.6	Effective Dose	51
		1.4.7	Kerma, "K" (Kinetic Energy Released	
			in Material)	52
	1.5	Sectio	on D: Interaction of Radiation with Matter	53
		1.5.1	Charged Particle Interaction	53
		1.5.2	Photon Interaction with the Medium	55
		1.5.3	Interaction of Neutron with Matter	57
	1.6	Sectio	on E: Production of X-Rays	57
		1.6.1	Historical Background	57
		1.6.2	Interaction of Electron with the Target	58

xiv Contents

		1.6.3	The Process of Production of X-Rays	59
		1.6.4	X-Ray Spectrum.	60
		1.6.5	X-Ray Properties and Classification Based	
			on Energy Ranges	61
		1.6.6	Clinical X-Ray Applications, Hazards,	
			and Significance in Diagnostic Radiography	63
		1.6.7	Significance of X-Rays in Diagnostic Radiography	65
	1.7	Section	n F: Production of Radionuclides	66
		1.7.1	Reactor-Based	66
		1.7.2	Cyclotron-Based	68
		1.7.3	Generator-Based	69
	1.8	Section	n G: Radioactivity	71
		1.8.1	Discovery of Radioactivity	71
		1.8.2	Unit of Radioactivity	71
		1.8.3	Radioactive Decay Equation and Half-Life	71
		1.8.4	Modes of Radioactive Decay	72
	Exe	cise		77
	M	lultiple-	Choice Questions (MCQs)	77
	SI	nort Que	estions	81
	L	ong Que	estion	82
	A	nswers t	to MCQs	83
	Refe	erences.		83
2	Stor	dord V	-Ray Tubes: Basic Principles, Types	
_			ibes, and Routine Quality Control	87
	2.1	•	iew of X-Ray Technology and Tubes	88
	2.2		ical Development of X-Ray Tubes	90
	2.2	2.2.1	Wilhelm Conrad Röntgen's Discovery Journey	92
		2.2.2	Rapid Advancement in X-Ray Technology and Swift	
			Integration into the Medical Practice	93
	2.3	Maior	Milestones in X-Ray Tubes	94
		2.3.1	Crookes Tubes and Early X-Ray Production	
			Challenges	94
		2.3.2	1913: Thermionic Cathodes—A Milestone	
			in X-Ray Tube Technology	95
		2.3.3	1918: Goetze's Line Focus.	96
		2.3.4	1925: The Philips Metalix Tube	98
		2.3.5	1926: J.E. Lilienfeld's Pioneering Work	
			in Solid-State Field-Effect Amplification	99
		2.3.6	1929: The Introduction of Rotating Anode Tubes	99
		2.3.7	1959: High-Speed Tubes—The Super	
			Rotalix (SRO) Tubes by Philips	100
		2.3.8	1973: The Super Rotalix Metal (SRM)	
			X-Ray Tube by Philips	101
		2.3.9	1979: The Super Rotalix Ceramic (SRC)	
			X-Ray Tube	101
		2.3.10		
		2.3.10	1987: Enhanced Heat Transfer Rotating	
		2.3.10		102

Contents xv

	2.3.11	1989: Maximus Rotalix Ceramic (MRC)	102
	2.3.12	1996: Rotating Anode Cooled by High Thermal	
		Conductivity Fluid by Varian Medical	
		Systems Inc	103
	2.3.13	2003: Rotating Frame X-Ray Tubes by Siemens	103
		2005: The GE Breakthrough: Largest	
		Commercial Anode	103
	2.3.15	2007: Philips' Innovation: The iMRC® Tube	
		for Enhanced Power Density CT Tube	104
	2.3.16	2018: GE'S Breakthrough in Cathode Innovation	
		for Spectral CT	105
	2.3.17	2020: Multisource X-Ray Tube to Reduce Imaging	
		Duration in Digital Breast Tomosynthesis	105
	2.3.18	2023: Line-Focus X-Ray Tube for Microbeam	
		Radiotherapy with Very High Dose Rates	106
2.4	Basic 1	Principles of X-Ray Tube Operation	106
2.5	Type o	of X-Ray Tubes	108
	2.5.1	Stationary Anode X-Ray Tubes	108
	2.5.2	Rotating Anode X-Ray Tubes	111
	2.5.3	Rotating Envelope X-Ray Tubes	113
2.6	Compo	onents Used in X-Ray Production	115
	2.6.1	X-Ray Tube Insert Assembly	116
	2.6.2	Tube Envelope/Tube Frame	131
	2.6.3	X-Ray Tube Housing Assembly	
2.7	Specia	l X-Ray Tubes	141
	2.7.1	Dental X-Ray Systems	141
	2.7.2	Mammography Tubes	143
	2.7.3	Fluoroscopic and Angiographic X-Ray Tubes	143
	2.7.4	Interventional Fluoroscopy and Computed	
		Tomography Tubes	146
	2.7.5	Micro- and Nano-Focus X-Ray Tubes	147
	2.7.6	Solid Metal Anode Micro-Focus X-Ray Tubes	148
	2.7.7	Liquid Metal Jet Alloy Anode Micro-Focus	
		X-Ray Tube	
2.8	X-Ray	Tube Accessories	150
	2.8.1	X-Ray Generator	150
	2.8.2	Basic Functionality and Type of X-Ray	
		Generators	157
	2.8.3	Filament Circuit	162
	2.8.4	Exposure Control in X-Ray Tubes by the X-Ray	
		Generator	
	2.8.5	Phototimers	
	2.8.6	Automatic Exposure Controls	163
	2.8.7	Fluoroscopic Systems	
	2.8.8	Falling Load Generators	
2.9		acturing of X-Ray Tubes	163
	2.9.1	Processing and Cleaning of X-Ray Tube	
		Insert Parts	
	2.9.2	Processing of X-Ray Tube Insert Parts Assembly	164

xvi Contents

		2.9.3	Processing of Glass or Metal-Ceramic Envelope	164
		2.9.4	Degassing of X-Ray Tube Insert	164
		2.9.5	Seasoning of X-Ray Tube Insert	164
		2.9.6	X-Ray Tube Assembly	165
		2.9.7	Final Testing of X-Ray Tube Assembly	165
		2.9.8	Quality Assurance/Quality Control	
			of X-Ray Tube Assembly	165
		2.9.9	Regulatory Tolerance Levels	166
	2.10	X-Ray	Tube Maintenance and Safety	166
		2.10.1	Recommendations to Maximize	
			X-Ray Tube Life	166
		2.10.2	Filtration in X-Ray Imaging	167
		2.10.3	X-Ray Generator Safety Measures	167
		2.10.4	X-Ray Tube Rating Chart	167
		2.10.5	Safety Measures for Installing an X-Ray Unit	167
		2.10.6	X-Ray Tube Overload Protection Circuits	168
	2.11	Comm	on X-Ray Tube Failures	168
		2.11.1	Normal Aging of X-Ray Tubes	169
		2.11.2	Manufacturing Deficiencies in X-Ray Tubes	170
		2.11.3	Application Mismatch in X-Ray Tubes	171
		2.11.4	Improper Power Supply Operation	
			in X-Ray Sources	172
			Considerations for X-Ray Tube Enclosures	
	2.12		cements in X-Ray Tube Technology	174
		2.12.1	Advancements in Rotating Anode	
			X-Ray Tube Technology	
			Grid-Controlled X-Ray Tubes	
			High-Power X-Ray Tubes	
			Dose Management	
				177
		-	Choice Questions	177
		_	estions	180
		_	estion	181
			swers	182
	Refe	rences.		182
3	Digi	tal Rad	iography Systems: Principles of Operation,	
			plications, and Quality Control	185
	3.1		n A: Computed Radiography Systems	
		3.1.1	Introduction, History, and Classification:	
			Computed Radiography	186
		3.1.2	Computed Radiography Working Principle	
		3.1.3	Computed Radiography Instrumentation	
		3.1.4	CR Image Artifacts	
		3.1.5	CR: Quality Control.	
	3.2		n B: Digital Radiography Systems	
	- ·-	3.2.1	History, Introduction, and Classification:	
			Digital Radiography	211
		3.2.2	DR Instrumentation: Major Components	
			of a Digital Radiography Imaging System	212

Contents xvii

		3.2.3	DR Flat-Panel Detectors: Direct and Indirect	
			Detector Technology	213
		3.2.4	DR Clinical Applications	222
		3.2.5	DR Artifacts	223
		3.2.6	Recent Technological Advancements	
			in Digital Radiography	229
	Exe	rcise		
			Choice Questions (MCQs)	
		_	estions	
	L	ong Que	estion	. 233
	A	nswers	for MCQs	. 234
	Refe	erences.		234
4	Mar		owhere Dhareign Duin simle of Omeration	
4		_	aphy: Physics, Principle of Operation, ntrol, and Safety	220
	4.1	•	uction	
	4.1			
			rical Evolution of Mammography	
	4.3		standing Breast Anatomy for Mammography	
	4.4		nography Equipment	
	4 =	4.4.1	Components of a Mammography Unit	
	4.5		l Breast Tomosynthesis	
		4.5.1	Principles of Digital Breast Tomosynthesis	
		4.5.2	Advantages of DBT	257
		4.5.3	Limitations and Disadvantages of Digital	250
	16	O114	Breast Tomosynthesis (DBT)	
	4.6	_	ry Control in Mammography	
		4.6.1	History of QC in Mammography	259
		4.6.2	Quality Control Tests for Digital Mammography	260
		162	(2D and DBT)	200
		4.6.3	Role of Professionals, Test Procedures,	261
	47	O114	and Frequency	
	4.7	_	y Control Tests	203
		4.7.1	Mammography Equipment Evaluation	262
		4.7.2	(MEE) and Annual Surveys	203
		4.7.2		264
		4.7.3	Image Quality	
		4.7.3	Spatial Resolution	
		4.7.4	DBT Volume Coverage	
		4.7.6		203
		4.7.0	Automatic Exposure Control System	266
		477	Performance	
		4.7.7	Average Glandular Dose	
		4.7.8	Unit Checklist	
		4.7.9	Acquisition Workstation Monitor QC	
			Radiologist Workstation Monitor QC	
		4.7.11	C (11 /	208
		4.7.12	Evaluation of Display Device Technologist	260
			QC Program	268

xviii Contents

		4.7.13	Computed Radiography Cassette Erasure	
			(If Applicable)	269
		4.7.14	Compression Thickness Indicator	
		4.7.15	Visual Checklist	269
		4.7.16	Viewbox Cleanliness (If Applicable)	269
		4.7.17	Facility QC Review	269
		4.7.18	Compression Force	269
		4.7.19	Manufacturer Calibrations (If Applicable)	270
			Repeat Analysis (Optional)	
		4.7.21	System QC for Radiologist (Optional)	270
			Radiologist Image Quality Feedback (Optional)	
	Exer			
			Choice Questions (MCQs)	
			estions	
			estions	
			to MCQs	
_				
5			y: Physics, Principle of Operation,	270
		_	y Control	
	5.1		arly Era of Fluoroscopic Imaging Techniques	
	5.2		own Facts About Fluoroscopic Imaging	
	5.3	-	al Demands for Fluoroscopic Imaging	
	5.4		anism of Action in Fluoroscopy	
	5.5		oscopy Instrumentation: Image Intensifier	
		5.5.1		
			Fluoroscopy X-ray Tube	
		5.5.3	1	
		5.5.4	Fluoroscopy Viewing Camera	
	5.6		oscopy—Radiation Protection Devices	
	5.7		al Applications of Fluoroscopy	
	5.8	_	l Fluoroscopy	290
		5.8.1	Classification of Flat Panel Detectors in Digital	
			Fluoroscopy	291
		5.8.2	Choosing the Right Scintillator for Flat	
			Panel Detectors	
		5.8.3	Working Principle of Indirect TFT Flat	
			Panel Detector	292
		5.8.4	Working Principle of Indirect CCD Flat	
			Panel Detector	
		5.8.5	Working Principle of Direct Flat Panel Detector	294
	5.9		tion Dose Considerations and Radiation	
			ction in Fluoroscopy	
			Design for Fluoroscopy	
	5.11		ment, Practice, and Image Quality	
			Image Quality Control in Fluoroscopy	
			ological Advancements in Fluoroscopy	
	5 13	Fluore	oscony Image-Related Artefacts	300

Contents xix

	5.14	Qualit	y Assurance (QA) and Quality Control (QC)	
		in Flu	oroscopy	304
	5.15	Learni	ing Outcomes	306
	Exer	cise		307
	M	ultiple	Choice Questions (MCQs)	. 307
	Sh	ort Qu	estions	. 309
	Lo	ong Que	estion	. 309
	Aı	nswers	to MCQs	. 309
	Refe	rences.		310
6	Com	puted	Tomography: Physics, Principle of Operation,	
_		_	ntrol, and Safety	313
	6.1	•	troduction and Overview of Computed Tomography.	
	6.2		rical Perspective of Computed Tomography	
	6.3		verview of CT Generations	
		6.3.1	First Generation CT Scanners	
		6.3.2	Second Generation CT Scanners	
		6.3.3	Third Generation CT Scanners	
		6.3.4	Fourth Generation CT Scanners	
		6.3.5	Fifth Generation CT Scanners	
		6.3.6	Slip-Ring Technology	324
		6.3.7	Spiral/Helical CT	
		6.3.8	The Concept of Pitch	325
		6.3.9	Multi-slice CTs	326
		6.3.10	Wide Cone Beam CT	327
	6.4	Advan	ncements in CT Technology	328
		6.4.1	Dual-Source CT	328
		6.4.2	Photon Counting CT Machine	329
	6.5	Advan	ntages of CT Over Conventional Radiography	333
	6.6	Princip	ples and Working of CT Scanners	335
		6.6.1	Hounsfield Units and Basis for Image	
			Reconstruction	335
		6.6.2	Beer-Lambert Law and X-ray Attenuation	336
		6.6.3	Polychromatic X-ray Source Consideration	
	6.7		owing in CT Imaging	
	6.8		strumentation and Detector Technology	
		6.8.1	The Scanning Part: Gantry and the Patient Table	340
		6.8.2	The Computer System for Data Processing	
			and Image Reconstruction	351
		6.8.3	The Console and Workstation for Image	
			Storage, Display, and Further Processing	
	6.9		ects in CT Imaging	
		6.9.1	2D Artifacts	
		6.9.2	3D Artifacts	
	6.10		y Control in CT	
			QC Tests and Their Frequencies	
			Quality Control Procedures	
	6.11	Contra	ast Enhancement in Computed Tomography	386

xx Contents

6.11.1 Physics of Contrast Media	386
6.11.2 Types of Contrast Media	387
6.11.3 Usage and Considerations	388
5.12 Applications of Volume Scanning	388
6.12.1 CT Fluoroscopy	388
6.12.2 CT Angiography	389
6.12.3 CT Endoscopy: Virtual Reality Imaging	389
6.12.4 Cardiac CT Imaging	389
5.13 Digital Image Processing	389
6.13.1 Matrix Size in CT	390
6.13.2 Image Formation, Resolution, and Bit Depth	390
6.13.3 Image Compression and Its Effects	390
5.14 CT Dose and Dosimetry	390
6.14.1 Standard Terms Used in CT Dose Assessment	. 391
6.14.2 CT Dosimetry Phantoms	394
6.14.3 Estimating Effective Doses	
6.14.4 Software and Tools for Effective	
Dose Calculation	396
6.14.5 Calculation of Effective Dose Using	
Dose Reports	396
6.14.6 Factors Influencing CT Doses	
5.15 Clinical Applications of CT	
6.15.1 Head and Brain CT Imaging	
6.15.2 Chest CT Imaging	
6.15.3 Abdominal and Pelvic Imaging	
6.15.4 Musculoskeletal Imaging	
6.15.5 Cardiac Imaging	
6.15.6 Guided Biopsies for Tissue Characterization	
in Oncological Treatment Planning	. 400
6.15.7 Dental and Maxillofacial Imaging	
6.15.8 Gastrointestinal Imaging	
6.15.9 Urological Imaging	
5.16 CT Room Design and Layout	
6.16.1 Room Size and Dimensions	
6.16.2 Room Layout	
6.16.3 Radiation Shielding	
6.16.4 Electrical and Mechanical Considerations.	
6.16.5 Safety and Accessibility.	
6.16.6 Patient Comfort and Experience	
6.16.7 Workflow Efficiency	
6.16.8 Regulatory Compliance	
6.16.9 Environmental Considerations.	
5.17 Safety Aspects in CT	
6.17.1 Dose Reduction Techniques.	
6.17.2 Pediatric-Specific Considerations	
6.17.3 Regulatory and Best Practice Guidelines	
6.17.4 Quality Assurance and Monitoring	
Exercise.	
JACI C10C	+03

Contents xxi

	M	[ultiple-0	Choice Questions	. 405
	Sl	hort Ans	wer Questions	. 409
			wer Question	
	A	nswers t	o MCQs	. 410
	Refe	erences.		411
7	Uwb	wid Ima	ging, Physics Principle of Operation	
/			ging: Physics, Principle of Operation, Control	417
	7.1	-	action to the Hybrid Imaging	
	7.1		eed for Hybrid Imaging	
	1.2		Limitation of PET Imaging	
			Limitations of SPECT Imaging	
			Limitations of CT Imaging	
			Limitations of MR Imaging	
	7.3		tages of Hybrid Imaging	
	7.4		ion Detectors and Their Properties and Mechanism	123
			ection Used in SPECT, PET, and CT	424
		7.4.1	Scintillation Detectors	
		7.4.2	Mechanism of Scintillation Detection	
		7.4.3	Computed Tomography (CT) Detectors	
	7.5		on Emission Tomography (PET) and How It Works.	
		7.5.1	Historical Developments of Positron Emission	
			Tomography (PET) and PET-CT	430
		7.5.2	Development of Positron-Emitting	
			Radiopharmaceuticals	430
		7.5.3	Coincidence Detection and Construction	
			of First PET Scanner	431
		7.5.4	The Positron Physics	431
		7.5.5	Working of PET	433
		7.5.6	PET-CT Data Acquisition	434
		7.5.7	PET-CT Instrumentation	435
		7.5.8	Detector, Detector Block, Sizes, and Shape	
		7.5.9	2D Versus 3D PET	437
		7.5.10	Axial-Paired (3D) Detector Ring	437
		7.5.11	Time-of-Flight (TOF) Detection	439
		7.5.12	Total Body PET Scanners with Whole-Body	
			Coverage	439
	7.6		mance Characteristics and Quality Control	
			-CT	
		7.6.1	Spatial Resolution	
		7.6.2	Sensitivity	
		7.6.3	Scatter Fraction, Count Losses, and Randoms	446
		7.6.4	Image Quality, Accuracy of Attenuation	
			and Scatter Correction, and Accuracy	
			of Radioactivity Quantitation	450
		7.6.5	Coincidence Timing Resolution or Time-of-Flight	
			Resolution and Energy Resolution	
		766	PET-CT Co-registration Accuracy	454

xxii Contents

		7.6.7	Uniformity Check of the Reconstructed	
			Image Test	
		7.6.8	Normalization and Well Counter Corrections	456
	7.7	The Ga	amma Camera, the Single Photon Emission	
		Compu	ited Tomography (SPECT), and How Do	
		They V	Vork	458
		7.7.1	Collimator	
		7.7.2	Scintillation Crystal and Photomultiplier Tubes	
		7.7.3	Preamplifier and Amplifier	
		7.7.4	Analogue-to-Digital Converter (ADC)	462
		7.7.5	Pulse Height Analyzer (PHA)	463
		7.7.6	<i>X</i> – <i>Y</i> Positioning Circuit and the Energy	
			Signals (<i>Z</i>)	463
		7.7.7	Uniformity, Linearity, and Energy Resolution	
			Correction	
		7.7.8	Image Display	465
		7.7.9	Single Photon Emission Computed	
			Tomography (SPECT) Imaging	465
	7.8	Quality	y Control in Gamma Camera/SPECT Imaging	467
		7.8.1	Tests of Intrinsic Gamma Camera Detector	
			Characteristics	468
		7.8.2	Extrinsic (with Collimator) Gamma	
			Camera Performance Parameters	. 479
		7.8.3	Tomographic (SPECT) Characteristics	. 484
	7.9	Image	Reconstruction Algorithms	490
		7.9.1	Filtered Back Projection (FBP)	490
		7.9.2	Iterative Reconstruction	490
		7.9.3	Newer Techniques Used for Reconstruction	
			of SPECT, PET, and Fusion Images	
		7.9.4	Hybrid Imaging Reconstructions	
	7.10		al Applications of Hybrid Imaging	
			PET-CT Applications	
		7.10.2	PET-MRI Applications	. 497
			SPECT-CT Applications	
			PET-CT-MRI Applications	
				. 499
			Choice Questions	499
			estions	503
		0	estions	503
			to MCQs	504
	Refe	rences.		504
8	Dent	al Rad	iography: Physics, Principle of Operation,	
			ntrol, and Safety	507
	8.1		action	
		8.1.1	Intraoral Radiographs (X-Rays)	
		8.1.2	Panoramic Radiograph (OPG)	
		8.1.3	Cephalometric Radiograph	
			- r	

Contents xxiii

		8.1.4	Cone-Beam Computed Tomography (CBCT)	. 510
	8.2	Highli	ghts of the Historical Development of Dental	
		X-Ray	Equipment	. 511
	8.3	Instrui	mentation of Dental X-Ray Imaging	. 513
		8.3.1	Intraoral X-Rays	. 513
		8.3.2	Panoramic Radiograph (OPG)	. 517
		8.3.3	Cephalometric Dental Units	. 520
		8.3.4	Cone-Beam Computed Tomography (CBCT)	. 522
	8.4	Qualit	y Control in Dental Radiography	
		8.4.1	Acceptance Testing and Routine Quality	
			Control (QC) of Dental Equipments	. 530
	8.5	Dose (Considerations and Regulatory Requirements	
			ntal Radiography	. 551
		8.5.1	Dose Considerations	
		8.5.2	Regulatory Requirements in Dental Radiography:	
			Ensuring Safety and Quality	. 552
	8.6	Safety	in Dental Radiography	
		8.6.1	The Three Pillars of Radiation Protection	
		8.6.2	Protecting Patients: Quality Images	
			with Minimal Dose	. 553
		8.6.3	Lead Aprons for Patients: A Focus	
			on Effectiveness	. 554
		8.6.4	Staff Safety: Knowledge, Distance,	
			and Shielding	. 554
		8.6.5	Protecting the Public: Keeping Unintended	
			Exposure to a Minimum	. 554
		8.6.6	Beyond the Basics: Equipment Considerations	
	Exer	cise	1	
			Choice Questions (MCQs)	
			estions	
			estion	
		_	to MCQs	
_				
9		_	f Radiology Department: A Global Perspective	
	9.1		uction	
	9.2		al Principles of Installation and Planning	
		9.2.1	Site Planning	
		9.2.2	Radiation Shielding	
		9.2.3	Equipment Selection	
		9.2.4	Staffing Levels	. 565
	9.3	_	atory Guidelines: X-Ray, Mammography,	
			oscopy, CT, and Hybrid Imaging	
		9.3.1	X-Ray Imaging	
		9.3.2	Mammography	
		9.3.3	Fluoroscopy	
		9.3.4	CT Imaging	
		9.3.5	Hybrid Imaging	. 566

xxiv Contents

		9.3.6	General Principles Across Modalities 567	
		9.3.7	Resources Outline	
		9.3.8	General Regulatory Requirements	
			for Diagnostic Radiology Departments 567	
	9.4	General	Recommendations and Codal Requirements	
		for Lay	out Planning: X-Ray, Mammography,	
		Fluoros	copy, CT, and Hybrid Imaging 569	
		9.4.1	Codal Requirements	
	9.5	Barrier	and Shielding Guidelines: X-Ray,	
		Mammo	ography, Fluoroscopy, CT, and Hybrid Imaging 571	
		9.5.1	Options in Shielding Materials 572	
		9.5.2	Step-by-Step Guidelines for Submission	
			of Layout Plan in Diagnostic Radiology Facility . 573	
		9.5.3	Shielding Criteria: Mammography, Fluoroscopy,	
		<i>y</i>	CT, and Hybrid Imaging	
	9.6	Model I	Layout Plan: X-Ray, Mammography,	
	,.0		copy, CT, and Hybrid Imaging	
	Exerc			
			oice Questions (MCQs)	
		-	ions	
			on	
		_	MCQs	
10	Radia		ety in Radiology	
	10.1		on Protection	
	10.2		nciples or the Framework of Radiation	
			on	
		10.2.1	Justification	
		10.2.2	Optimization	
		10.2.3	Dose Limitation	
		10.2.4	Dose Monitoring and Record Keeping 596	
	10.3	Fundam	ental Principles of Radiation Protection 597	
		10.3.1	Time	
		10.3.2	Distance	
		10.3.3	Shielding	
	10.4	Terms R	Related to Radiation Dose and Dose Limit 598	
		10.4.1	Radiation Absorbed Dose (D) 598	
		10.4.2	Dose Rate	
		10.4.3	Equivalent Dose	
		10.4.4	Effective Dose	
		10.4.5	Collective Effective Dose or Collective	
			Dose: Assessing Population Exposure 601	
		10.4.6	Dose Limit	
	10.5	Principl	es of Safe Work Practices in Diagnostic	
			gy	
	10.6		Barriers and Techniques for Radiation	
			on in Radiology	
		10.6.1	Design and Regulations 610	
		10.6.2	Use of Radiation Barriers 611	
		10.0.4	OSC OF National Darries,	

Contents xxv

	10.6.3	Use of Patient Positioning Aids	. 612
	10.6.4	Use of Filtration	
	10.6.5	Use of Collimation	. 613
	10.6.6	Use of Intensifying Screen	. 613
	10.6.7	Regular Staff Training and Equipment	
		Quality Control	. 613
10.7	Regulato	ory Bodies	. 613
	10.7.1	International Commission on Radiological	
		Protection	. 614
	10.7.2	IAEA	. 614
	10.7.3	World Health Organization (WHO)	
	10.7.4	National Regulatory Authorities	
	10.7.5	Food and Agriculture Organization (FAO)	. 614
	10.7.6	United Nations Scientific Committee	
		on the Effects of Atomic Radiation	
		(UNSCEAR)	
	10.7.7	Health and Medical Organizations	. 615
	10.7.8	Industry-Specific Authorities	
10.8	Biologic	al Effects of Radiation	
	10.8.1	Deterministic Effects	
	10.8.2	Stochastic Effects	. 617
10.9	Female I	Patients, Female Radiation Workers,	
	and the E	Effects of Radiation on the Fetus	. 618
	10.9.1	Conducting Different Diagnostic	
		Procedures During Pregnancy	. 618
	10.9.2	Effects of Radiation on the Fetus	
		During Different Phases of Pregnancy	. 619
	10.9.3	Safety and Handling of Female Patients	
		of Childbearing Age	
	10.9.4	Pregnant Female Radiation Worker	
10.10		n Area and Its Classification	
	10.10.1	Controlled Area	
	10.10.2	Supervised Area	
	10.10.3	Unsupervised Area	
10.11		Monitoring Devices	
	10.11.1	Thermo-Luminescent Dosimeters	
	10.11.2	Pocket Ionization Chambers	
	10.11.3	Digital Pocket Dosimeter	
	10.11.4	Film Badges	
	10.11.5	Extremity Monitors	
10.12		n Emergencies	. 633
	10.12.1	General Preparedness for Radiological	
		Emergencies	
	-	sice Questions (MCQs)	635
	_	ons	638
	_	ons	638
		MCQs	639
Refere	ences		. 639

xxvi Contents

		y and Pediatric Care in Radiological	
Proce		6	41
11.1		ction: Legislation, Justification,	
	_	imization	
11.2		es of Pediatric Imaging 6	542
11.3	•	Precautions in Pediatric Ionizing Radiation	
		Based on the Imaging Modality6	543
	11.3.1	Radiation Safety Precautions During	
		X-Ray/Fluoroscopy Procedures for Pediatric	
		Imaging 6	43ر
	11.3.2	Radiation Safety Precautions During	
		CT Pediatric Imaging	
	11.3.3	FDA's Responsibilities in X-Ray Safety)44
	11.3.4		
		and Healthcare Professionals	ه45)
	11.3.5	Guidelines for Pediatric Population	
		Patients, Parents, and Caregivers	ه45)
11.4		of Psychological Factors and Child	
11.5		oment in Pediatric Radiography	
11.5		ersus Adult Anatomical Differences)46
11.6		into the Approach Involved in Pediatric	- 47
		Preparation	
	11.6.1	8 8)48
	11.6.2	Radiographic Technical Considerations for	- 40
	11.62	Supplementing Immobilization Techniques 6	
117	11.6.3	Approaching Children with Special Needs 6)49
11.7		Room Design Specifications and Devices	: 40
11.0		Distract Pediatric Radiography Patients)49
11.8		c Imaging Device Equipment Specifications	: 40
11.9	for Industry Manufacturers		
11.9		tric Imaging6	50
	11.9.1	Diagnostic Reference Ranges in Pediatric)30
	11.9.1	Radiography6	550
	11.9.2	Image Quality and Dosimetry in Pediatric	150
	11.9.2	Radiography6	551
11 10	Routine	Pediatric Radiological Examinations,	151
11.10	Recommended Projections, and Referral Criteria		
11 11	Recent Advancements in Pediatric Radiography		
11.11		g Techniques	552
		AI and Pediatric Radiography 6	
Exerci			
			554
	-		555
	_		555
			555
Refere			556

Contents xxvii

12	Role of Nursing Care in Radiological Procedures			. 659
	12.1	Introduc	ction	. 660
	12.2	Role of	Nursing Care in Radiological Procedures:	
		What It	Takes to Specialize in This Area	. 660
	12.3	Nursing	Perspective: Patient Care and Assessment	
		in Vario	us Radiological Procedures	. 662
	12.4	Impact	of Nursing Radiology Professionals	. 662
		12.4.1	What Is the Main Role of a Radiology Nurse?	. 662
		12.4.2	What Are the Radiology Nursing Safety	
			Concerns?	. 663
		12.4.3	Before the Procedure	. 663
		12.4.4	During the Procedure	. 663
		12.4.5	Following the Procedure	. 663
		12.4.6	Nursing Efficiency	. 663
		12.4.7	How Do Radiology Nurses Create an Impact	
			on Patient Care?	. 663
		12.4.8	What Education and Training Do Radiology	
			Nursing Staff Require?	. 664
		12.4.9	Dealing with Acute Situations: Nursing Angle	. 664
	12.5	Infectio	n Control and Sterilization Techniques	. 665
		12.5.1	The Below-Mentioned Measures Should Be	
			Implemented in Healthcare Facilities to Ensure	
			an Effective Infection Control Program,	
			and the Radiology Nursing Staff Should	
			Take a Lead Role	. 665
	12.6	Nursing	Care and Role in Emergency Medications	
		in Case of Contrast Reaction: Nursing Responsibilities		
		for CT	Scan	. 667
		12.6.1	Nursing Care During Computed Tomographic	
			Procedures Using Contrast Media: Prevention,	
			Detection, and Treatment of Effects Caused	
			by Iodinated Contrast	. 668
		12.6.2	Nursing Intervention Before the Procedure	. 669
		12.6.3	Nursing Intervention After the Procedure	
		12.6.4	Nursing: Intravenous Contrast Checklist	
		12.6.5	Storage, Preparation, and Documentation	
			of Contrast Media	. 669
	12.7	Nursing	Care in Bedside Radiography	
		12.7.1	A Workflow Relationship: Between Referring	
			Medical Doctor, Medical Imaging Technologist,	
			and Radiology Nurse	. 670
		12.7.2	Control During Mobile Radiography	
	12.8	Care, Preparation, and Examinations		
			rointestinal Studies	. 671
		12.8.1	Nursing Care and Preparation: Before	
			the Examination	. 672
		12.8.2	Nursing Care and Preparation: During	
			the Examination	. 672

xxviii Contents

	12.8.3	Nursing Care and Preparation: After	
		the Examination	673
12.9	Nursing	Care During Radiological Special	
	Procedur	res Using Fluoroscopy	673
	12.9.1	Nursing Care: Pre-procedure Preparation	674
	12.9.2	Nursing Care and Preparation: During	
		the Procedure	674
	12.9.3	Nursing Care and Preparation: Aftercare	675
12.10	Nursing	Care During Mammography	675
	12.10.1	Mammography Indications	676
	12.10.2	Contraindications	676
	12.10.3	Compounding Factors	676
	12.10.4	Nursing Responsibility During Mammography	676
	12.10.5	Nursing Responsibility During	
		Mammography: During the Procedure	676
	12.10.6	Nursing Responsibility During Mammography	677
	12.10.7	Mammography: Normal	
		and Abnormal Results	677
12.11	Nursing	Care During Biopsies and Fine-Needle	
	Aspiratio	on Studies: Fine-Needle Aspiration	
	Cytology	7: The Nurse's Role	
	12.11.1	Nurse's Role in FNAC and Biopsy	678
	12.11.2	Nursing Role: Before the Procedure	679
	12.11.3	Nursing Role: During the Procedure	679
	12.11.4	Nursing Role: After the Procedure	679
12.12	Nursing !	Responsibilities for Chest X-Ray Examinations	680
	12.12.1	Nursing Interventions: Before Chest X-Ray	680
	12.12.2	Nursing Interventions: After Chest X-Ray	680
	12.12.3	Normal Findings in a Chest X-Ray	680
12.13	Summar	у	680
Exerc	ise		680
Mu	ltiple Cho	ice Questions (MCQs)	680
Sho	ort Questic	ons	683
Lor	ng Questic	ons	683
Ans	swers for l	MCQ	683
Refere	ences		684